精英家教网 > 高中数学 > 题目详情

已知函数.
(1)判断函数的奇偶性;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值;

(1)为奇函数。 (2)当时,上是减函数.当时,上是增函数. (3).   

解析试题分析:(1)由得函数的定义域为, 2分

所以为奇函数。                                               4分
(2)由(1)及题设知:,设
∴当时, ∴.   6分 
时,,即.
∴当时,上是减函数.    
同理当时,上是增函数.               8分
(3)①当时,有
由(2)可知:为增函数,                             9分
由其值域为 ,无解                 10分
②当时,有.由(2)知:为减函数,
由其值域为                            11分
.                                             12分
考点:本题考查了函数的性质
点评:偶函数在关于原点对称的两个区间上的单调性相反,而奇函数在关于原点对称的两个区间上的单调性相同

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数且是减函数,若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)讨论的奇偶性;
(2)当时,求的单调区间;
(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值 ;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,(1)分别求;(2)然后归纳猜想一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的值域为
(1)求的值;
(2)若关于的函数在区间上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)时,求的极值;
(2)当时,讨论的单调性;
(3)证明:,其中无理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若为定义域上的单调函数,求实数m的取值范围;
(2)当m=-1时,求函数的最大值;
(3)当时,证明:

查看答案和解析>>

同步练习册答案