精英家教网 > 高中数学 > 题目详情

已知函数在区间上的值域为
(1)求的值;
(2)若关于的函数在区间上为单调函数,求实数的取值范围.

(1)a=1,b=0
(2)m≥5或m≤1.

解析试题分析:(1)∵a>0,∴所以抛物线开口向上且对称轴为x=1.
∴函数f(x)在[2,3]上单调递增.
由条件得
,即,解得a=1,b=0. 
(2)由(1)知a=1,b=0.
∴f(x)=x2-2x+2,从而g(x)=x2-(m+3)x+2.        
若g(x)在[2,4]上递增,则对称轴,解得m≤1;
若g(x)在[2,4]上递减,则对称轴,解得m≥5,
故所求m的取值范围是m≥5或m≤1. 
考点:二次函数的性质
点评:解决的关键是根据二次函数的性质来得到单调性以及函数的值域,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求
(2)证明:函数上单调递增;
(3)当时,
①解不等式
②求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)判断函数的奇偶性;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并证明函数的单调性;
(2)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求的值
(2)判断上的单调性,并利用定义给出证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)求的极小值;
(2)若上为单调增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (a>0,且a≠1),=.
(1)函数的图象恒过定点A,求A点坐标;
(2)若函数的图像过点(2,),证明:函数(1,2)上有唯一的零点.

查看答案和解析>>

同步练习册答案