已知,函数
(1)求的极小值;
(2)若在上为单调增函数,求的取值范围;
(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围.
(1).(2) 的取值范围是.
(3)要在上存在一个,使得,必须且只需.
解析试题分析:(1)由题意,,,∴当时,;当时,,所以,在上是减函数,在上是增函数,故. 4分
(2) ,,由于在内为单调增函数,所以在上恒成立,即在上恒成立,故,所以的取值范围是. 9分
(3)构造函数,
当时,由得,,,所以在上不存在一个,使得.
当时,,因为,所以,,所以在上恒成立,故在上单调递增,,所以要在上存在一个,使得,必须且只需,解得,故的取值范围是.
另法:(Ⅲ)当时,.
当时,由,得 , 令,则,所以在上递减,.
综上,要在上存在一个,使得,必须且只需.
考点:本题主要考查应用导数研究函数的单调性、最值及不等式恒成立问题。
点评:难题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间、极值,最终确定最值情况。涉及恒成立问题,往往通过构造函数,研究函数的最值,得到解题目的。
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com