证明函数f(x)=x+
在(0,1)上是减函数.
科目:高中数学 来源: 题型:解答题
已知
,函数![]()
(1)求
的极小值;
(2)若
在
上为单调增函数,求
的取值范围;
(3)设
,若在
(
是自然对数的底数)上至少存在一个
,使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(a>0,且a≠1),
=
.
(1)函数
的图象恒过定点A,求A点坐标;
(2)若函数
的图像过点(2,
),证明:函数
在
(1,2)上有唯一的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义域为[0,1]的函数同时满足以下三个条件:①对任意
,总有
;②
;③若
,则有
成立.
(1) 求
的值;(2) 函数
在区间[0,1]上是否同时适合①②③?并予以证明
(3) 假定存在
,使得
,且
,求证:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
,且
能表示成一个奇函数
和一个偶函数
的和.
(1)求
和
的解析式.
(2)命题
:函数
在区间
上是增函数;命题
:函数
是减函数,如果命题
、
有且仅有一个是真命题,求实数
的取值范围.
(3)在(2)的条件下,比较
和
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com