精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:

(I)当时,增区间;当时,增区间减区间(Ⅱ)(Ⅲ)当时有恒成立,恒成立,即上恒成立,令,则,即,从而,所以有成立

解析试题分析:(I)函数
,则上是增函数
时,若时有
时有上是增函数,
上是减函数               ………(4分)
(Ⅱ)由(I)知,时递增,
不成立,故  
又由(I)知,要使恒成立,
即可。 由………(8分)
(Ⅲ)由(Ⅱ)知,当时有恒成立,
上是减函数,
恒成立,
上恒成立 。……………………(10分)
,则,即
从而
成立……(14分)
考点:利用导数求单调区间求函数最值
点评:第一问中求单调区间要对参数k分情况讨论,第二问将不等式恒成立问题转化为求函数最大值问题,这是函数与不等式间常用的转化方法,第三问难度较大需要构造函数,学生不易掌握

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

证明函数f(x)=x+在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并证明;
(3)判断函数f(x)在定义域上的单调性,并用定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
若函数在区间(a,a+)上存在极值,其中a>0,求实数a的取值范围;
如果当时,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 若函数的图象过两点,设函数;
(1)求的定义域;
(2)求函数的值域,判断g(x)奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知奇函数对任意,总有,且当时,.
(1)求证:上的减函数.
(2)求上的最大值和最小值.
(3)若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知命题P:函数R上的减函数,命题Q:在 时,不等式恒成立,若命题“”是真命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案