精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围。

(I) 所以在各区间内的增减性如下表:

区间

,t)
(t,1)
(1,+
的符号
+

+
+
的单调性
增函数
减函数
增函数
增函数
(II)a的取值范围为(,2)

解析试题分析:(I) 的定义域为(,1)(1,
 

因为(其中)恒成立,所以
⑴ 当时,在(,0)(1,)上恒成立,所以在(,1)(1,)上为增函数;
⑵ 当时,在(,0)(0,1)(1,)上恒成立,所以在(,1)(1,)上为增函数;
⑶ 当时,的解为:((t,1)(1,+
(其中
所以在各区间内的增减性如下表:

区间

,t)
(t,1)
(1,+
的符号
+

+
+
的单调性
增函数
减函数
增函数
增函数
 
(II)显然

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)己知函数
(1)求的单调区间;
(2)若时,恒成立,求的取值范围;
(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(1) 当a= -1时,求函数的最大值和最小值;
(2) 求实数a的取值范围,使y=f(x)在区间上是单调函数
(3) 求函数f(x)的最小值g(a),并求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(I)求的最小值;
(II)若对所有都有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)确定上的单调性;
(Ⅱ)设上有极值,求的取值范围。

查看答案和解析>>

同步练习册答案