精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 若函数的图象过两点,设函数;
(1)求的定义域;
(2)求函数的值域,判断g(x)奇偶性,并说明理由.

(1)(2)的值域为为偶函数

解析试题分析(1)函数的图象过两点,
所以,解得;                                                   ……4分
所以,所以定义域为;                                             ……6分
(2)
所以的定义域为
,根据复合函数的单调性可知,的值域为,                     ……9分因为定义域关于原点对称,且满足,所以为偶函数.                 ……12分
考点:本小题主要考查指数型函数和对数型函数,函数的定义域、值域、单调性和奇偶性.
点评:本小题综合求解函数的性质,重点考查函数的定义域、值域、单调性和奇偶性,要注意定义域和值域一定要写成集合或区间的形式,考查函数的奇偶性时,要先看函数的定义域是否关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为[0,1]的函数同时满足以下三个条件:①对任意,总有;②;③若,则有成立.
(1) 求的值;(2) 函数在区间[0,1]上是否同时适合①②③?并予以证明
(3) 假定存在,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数.其中表示不超过的最大整数,例如
(Ⅰ)试判断函数的奇偶性,并说明理由;
(Ⅱ)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数为自然对数的底数).
时,求的单调区间;若函数上无零点,求最小值;
若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)己知函数
(1)求的单调区间;
(2)若时,恒成立,求的取值范围;
(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(1) 当a= -1时,求函数的最大值和最小值;
(2) 求实数a的取值范围,使y=f(x)在区间上是单调函数
(3) 求函数f(x)的最小值g(a),并求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)若函数处取得极值,求实数a的值;
(Ⅱ)在(I)条件下,若直线与函数的图象相切,求实数k的值;
(Ⅲ)记,求满足条件的实数a的集合.

查看答案和解析>>

同步练习册答案