精英家教网 > 高中数学 > 题目详情

已知函数 ,且能表示成一个奇函数和一个偶函数的和.
(1)求的解析式.
(2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题有且仅有一个是真命题,求实数的取值范围.
(3)在(2)的条件下,比较的大小.

(1);(2);(3)

解析试题分析:(1)


解得
(2)上是增函数
,解得
是减函数

又命题有且仅有一个是真命题
(3)
由(2)知
设函数
在区间上为增函数

时,即:
考点:本题考查了函数的解析式及单调性的运用
点评:对函数的考查主要有:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若为定义域上的单调函数,求实数m的取值范围;
(2)当m=-1时,求函数的最大值;
(3)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数f(x)=x+在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:函数
(1)求函数时的值域;
(2)求函数时的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数。
(Ⅰ)求的值;
(Ⅱ)若对任意的,不等式恒成立,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数上是偶函数,其图象关于直线对称,且在区间上是单调函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并证明;
(3)判断函数f(x)在定义域上的单调性,并用定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
若函数在区间(a,a+)上存在极值,其中a>0,求实数a的取值范围;
如果当时,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。

查看答案和解析>>

同步练习册答案