精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数上是偶函数,其图象关于直线对称,且在区间上是单调函数,求的值.

解析试题分析:因为函数上是偶函数,
所以,又,所以   
于是
由于图象关于直线对称,所以
,即    
因为在区间上是单调函数,所以的最小正周期
,即,所以,于是
    
考点:已知三角函数模型的应用问题
点评:本题主要考查三角函数的图象、单调性、奇偶性等基本知识,以及分析问题和推理计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论的奇偶性;
(2)判断上的单调性并用定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
若函数的定义域为,其中a、b为任
意正实数,且a<b。
(1)当A=时,研究的单调性(不必证明);
(2)写出的单调区间(不必证明),并求函数的最小值、最大值;
(3)若其中k是正整数,对一切正整数k不等式都有解,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ,且能表示成一个奇函数和一个偶函数的和.
(1)求的解析式.
(2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题有且仅有一个是真命题,求实数的取值范围.
(3)在(2)的条件下,比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,其中
(1)若函数是偶函数,求函数在区间上的最小值;
(2)用函数的单调性的定义证明:当时,在区间上为减函数;
(3)当,函数的图象恒在函数图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)设函数
(Ⅰ)求函数的单调递增区间;
(II)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不等式选讲已知函数
⑴当时,求函数的最小值;
⑵当函数的定义域为时,求实数的取值范围。

查看答案和解析>>

同步练习册答案