(本小题满分14分)
已知函数,,其中.
(1)若函数是偶函数,求函数在区间上的最小值;
(2)用函数的单调性的定义证明:当时,在区间上为减函数;
(3)当,函数的图象恒在函数图象上方,求实数的取值范围.
科目:高中数学 来源: 题型:解答题
设函数,的两个极值点为,线段的中点为.
(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;
(2) 如果点在第四象限,求实数的范围;
(3) 证明:点也在函数的图象上,且为函数图象的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)
已知函数,
(1)若对于定义域内的恒成立,求实数的取值范围;
(2)设有两个极值点,且,求证:;
(3)设若对任意的,总存在,使不等式成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com