精英家教网 > 高中数学 > 题目详情

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

(1)函数的递增区间是,递减区间是;(2).

解析试题分析:(1)

,函数的单调区间如下表:








 


 
 

­
极大值
¯
极小值
­
所以函数的递增区间是,递减区间是
(2),当时,为极大值,
,则为最大值,
要使恒成立,
,得.
考点:本题主要考查利用导数研究函数单调性、求函数极值、最值。
点评:典型题,导数的应用,是高考必考内容,注意解答成立问题的一般方法步骤。恒成立问题,往往通过分离参数法,转化成求函数最值问题,应用导数知识加以解答。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,其中
(1)若函数是偶函数,求函数在区间上的最小值;
(2)用函数的单调性的定义证明:当时,在区间上为减函数;
(3)当,函数的图象恒在函数图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,曲线在点处的切线方程为.
(1)求函数的解析式;
(2)过点能作几条直线与曲线相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)定义在上的函数,当时,.且对任意的
(1)证明:
(2)证明:对任意的,恒有
(3)证明:上的增函数;
(4)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不等式选讲已知函数
⑴当时,求函数的最小值;
⑵当函数的定义域为时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数,且方程有两个实根.
(1)求函数的解析式;
(2)设,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递减区间;
(2)求函数在区间上的最小值和最大值,并求出取得最值时的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数为实常数)为奇函数,函数
(Ⅰ)求的值;
(Ⅱ)求上的最大值;
(Ⅲ)当时,对所有的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案