已知函数
在
与
时都取得极值
(1)求
的值与函数
的单调区间
(2)若对
,不等式
恒成立,求
的取值范围。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数
,
,其中
.
(1)若函数
是偶函数,求函数
在区间
上的最小值;
(2)用函数的单调性的定义证明:当
时,
在区间
上为减函数;
(3)当
,函数
的图象恒在函数
图象上方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)定义在
上的函数
,
,当
时,
.且对任意的
有
。
(1)证明:
;
(2)证明:对任意的
,恒有
;
(3)证明:
是
上的增函数;
(4)若
,求
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com