精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知函数,且方程有两个实根.
(1)求函数的解析式;
(2)设,解关于的不等式

(1);(2)当时,解集为;当时,不等式为,解集为;当时,解集为.

解析试题分析:(1)将分别代入方程,得
解得,    -------2分     所以   --------4分
(2)不等式即为,可化为
        --------6分
时,解集为;    -------- 8分
时,不等式为,解集为; ----- 10分
时,解集为.        ----------12分
考点:分式不等式的解法;一元二次不等式的解法;二次函数的性质。
点评:解含参二次不等式的主要思想是分类讨论:一般的讨论开口方向、两根的大小和判别式。在分类讨论时要注意不重不漏。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数的图象关于原点对称,且.
(1)求函数的解析式;
(2)若在[-1,1]上是增函数,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数:.
(1) 当时①求的单调区间;
②设,若对任意,存在,使,求实数取值范围.
(2) 当时,恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本小题满分12分)
已知函数是常数)在x=e处的切线方程为既是函数的零点,又是它的极值点.
(1)求常数a,b,c的值;
(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;
(3)求函数的单调递减区间,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)是否存在实数,使是奇函数?若存在,求出的值;若不存在,给出证明。
(2)当时,恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知对于任意实数满足,当时,.
(1)求并判断的奇偶性;
(2)判断的单调性,并用定义加以证明;
(3)已知,集合,
集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分8分)
某商店经营的消费品进价每件14元,月销售量(百件)与销售价格(元)的关系如下图,每月各种开支2000元.

(1)写出月销售量(百件)与销售价格(元)的函数关系;
(2)写出月利润(元)与销售价格(元)的函数关系;
(3)当商品价格每件为多少元时,月利润最大?并求出最大值.

查看答案和解析>>

同步练习册答案