(本小题满分12分)
已知
对于任意实数
满足
,当
时,
.
(1)求
并判断
的奇偶性;
(2)判断
的单调性,并用定义加以证明;
(3)已知
,集合
,
集合
,若
,求实数
的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知函数
,若
为定义在R上的奇函数,则(1)求实数
的值;(2)求函数
的值域;(3)求证:
在R上为增函数;(4)若m为实数,解关于
的不等式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)已知
.
(I)求
的单调增区间;
(II)若
在定义域R内单调递增,求
的取值范围;
(III)是否存在
,使
在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是由满足下述条件的函数构成的集合:对任意
,
① 方程
有实数根;② 函数
的导数
满足
.
(Ⅰ)判断函数
是否是集合
中的元素,并说明理由;
(Ⅱ)集合
中的元素
具有下面的性质:若
的定义域为
,则对于任意
,都存在
,使得等式
成立.试用这一性质证明:方程
有且只有一个实数根;
(Ⅲ)对任意
,且
,求证:对于
定义域中任意的
,
,
,当
,且
时,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com