精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知对于任意实数满足,当时,.
(1)求并判断的奇偶性;
(2)判断的单调性,并用定义加以证明;
(3)已知,集合,
集合,若,求实数的取值范围.

(1) 是奇函数 (2) 上是增函数. (3)

解析试题分析:解:(1)令 
                  
,得
 是奇函数               
(2)函数上是增函数.                        
证明如下:
 ,

(或由(1)得)
上是增函数.            
(3),又,可得,,
=         
,,可得,
所以,实数的取值范围.
考点:本试题考查了函数的奇偶性和单调性的运用。
点评:对于函数的奇偶性和单调性是高考考查的重点,因此要熟练的运用概念,先看定义域,然后看解析式f(x)与f(-x)的关系来确定奇偶性,同时结合抽象函数的赋值法表示来证明单调性,需要对于变量合理的变形来证明,这是一个难点,要注意积累。属于难度试题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数是定义在上的偶函数,当时,

(1)求函数的解析式,并画出函数的图像。
(2)根据图像写出的单调区间和值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数,且方程有两个实根.
(1)求函数的解析式;
(2)设,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数,若为定义在R上的奇函数,则(1)求实数的值;(2)求函数的值域;(3)求证:在R上为增函数;(4)若m为实数,解关于的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递减区间;
(2)求函数在区间上的最小值和最大值,并求出取得最值时的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求的取值范围;
(III)是否存在,使在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是由满足下述条件的函数构成的集合:对任意
① 方程有实数根;② 函数的导数满足
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,当,且时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若对任意正实数x,不等式恒成立,求实数k的值;
(Ⅲ)求证:.(其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)证明:是奇函数;
(2)求的单调区间;
(3)写出函数图象的一个对称中心.

查看答案和解析>>

同步练习册答案