精英家教网 > 高中数学 > 题目详情

已知函数 (a>0,且a≠1),=.
(1)函数的图象恒过定点A,求A点坐标;
(2)若函数的图像过点(2,),证明:函数(1,2)上有唯一的零点.

(1)
(2)先利用已知条件求出a,在利用单调性和零点存在定理即可证明

解析试题分析:(1)因为对数函数恒过顶点(1,0),
所以令所以过顶点                                 5分
(2)∵  
∴代入计算可得a=2                                                         7分

上的增函数和减函数

                                      10分
又(1,2)
上至多有一个零点.                                            12分


∴函数(1,2)                                  16分
考点:本小题主要考查对数函数过定点和函数的单调性以及零点存在定理的应用.
点评:指数函数和对数函数都过定点,这条性质要灵活应用;利用函数的零点存在定理时要注意它只能判断有零点,不能判断零点的个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数在区间上的值域为
(1)求的值;
(2)若关于的函数在区间上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①当时,求函数在上的最大值和最小值;
②讨论函数的单调性;
③若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若为定义域上的单调函数,求实数m的取值范围;
(2)当m=-1时,求函数的最大值;
(3)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .

(1)画出 a =" 0" 时函数的图象;
(2)求函数 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线在点处的切线与直线垂直,求实数的值.
(2)若,求的最小值
(3)在(Ⅱ)上求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a>1).
(1)判断函数f (x)的奇偶性;
(2)求f (x)的值域;
(3)证明f (x)在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数f(x)=x+在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并证明;
(3)判断函数f(x)在定义域上的单调性,并用定义证明。

查看答案和解析>>

同步练习册答案