精英家教网 > 高中数学 > 题目详情

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值 ;
(3)数列满足,求的整数部分.

(1).(2) (3)的整数部分为.    l4分

解析试题分析:(1), 1分
依题设,有,即, 2分
解得 3分
.     4分
(2)方程,即,得, ………5分

. ……6分
,得 ………7分
变化时,的变化情况如下表:

∴当时,F(x)取极小值 ;当时,F(x)取极大值…………8分
作出直线和函数的大致图象,可知当时,
它们有两个不同的交点,因此方程恰有两个不同的实根, ………9分
(3) ,得,又

.    10分
,得, 11分
,即 12分


   13分
,故的整数部分为.    l4分
考点:本题考查了导数的运用
点评:近几年新课标高考对于函数与导数这一综合问题的命制,一般以有理函数与半超越(指数、对数)函数的组合复合且含有参量的函数为背景载体,解题时要注意对数式对函数定义域的隐蔽,这类问题重点考查函数单调性、导数运算、不等式方程的求解等基本知识,注重数学思想(分类与整合、数与形的结合)方法(分析法、综合法、反证法)的运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知奇函数上是增函数,且
① 确定函数的解析式;
② 解不等式<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,函数f(x)=(x2+1)(xa),若f′(-1)=0,求函数yf(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求
(2)证明:函数上单调递增;
(3)当时,
①解不等式
②求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列函数的奇偶性
(1)                  (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)判断函数的奇偶性;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并证明函数的单调性;
(2)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明:函数是偶函数,且在上是减少的。(13分)

查看答案和解析>>

同步练习册答案