数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总试卷大全
证明:函数是偶函数,且在上是减少的。(13分)
直接用定义证明函数的奇偶性和单调性。
解析试题分析:证明:函数的定义域为,对于任意的,都有,∴是偶函数.(Ⅱ)证明:在区间上任取,且,则有,∵,,∴即∴,即在上是减少的.考点:函数的奇偶性;函数的单调性。点评:用定义法证明函数单调性的步骤:一设二作差三变形四判断符号五得出结论,其中最重要的是四变形,最好变成几个因式乘积的形式,这样便于判断符号。
科目:高中数学 来源: 题型:解答题
已知函数在 处的切线方程为.(1)求函数的解析式;(2)若关于的方程恰有两个不同的实根,求实数的值 ;(3)数列满足,,求的整数部分.
已知且,当时,恒有求的解析式;若的解集为空集,求的范围。
已知函数①当时,求函数在上的最大值和最小值;②讨论函数的单调性;③若函数在处取得极值,不等式对恒成立,求实数的取值范围。
已知是R上的奇函数,且当时,,求的解析式。
已知函数.(1)若为定义域上的单调函数,求实数m的取值范围;(2)当m=-1时,求函数的最大值;(3)当,时,证明:.
已知函数 .(1)画出 a =" 0" 时函数的图象;(2)求函数 的最小值.
已知函数(a>1).(1)判断函数f (x)的奇偶性;(2)求f (x)的值域;(3)证明f (x)在(-∞,+∞)上是增函数.
已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围;
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区