精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow a=(1,-m),\overrightarrow b=(m,1)$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-1B.0C.-2mD.1-m2

分析 根据向量的数量积的坐标运算计算即可.

解答 解:∵$\overrightarrow a=(1,-m),\overrightarrow b=(m,1)$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=m-m=0,
故选:B.

点评 本题考查了向量的数量积的坐标运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(-x,x2),则向量$\overrightarrow{a}$+$\overrightarrow{b}$(  )
A.与向量$\overrightarrow{c}$=(0,1)垂直B.与向量$\overrightarrow{c}$=(0,1)平行
C.与向量$\overrightarrow{d}$=(1,-1)垂直D.与向量$\overrightarrow{d}$=(1,-1)平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=2{sin^2}(\frac{π}{4}+x)+\sqrt{3}$cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,若f(C)=$\sqrt{3},2sinB=cos({A-C})-cos({A+C})$,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.甲、乙两名篮球运动员在某几场比赛中得分的成绩如下,甲:12,15,24,25,31,36,37,39,44,49,50;乙:13,14,16,23,26,27,28,33,38,39,51则甲、乙两人在这几场比赛中得分的中位数之和是(  )
A.63B.64C.65D.66

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=1,|\overrightarrow b|=\sqrt{3},\overrightarrow a+\overrightarrow b=(\sqrt{3},1)$,则$|\overrightarrow a-\overrightarrow b|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,C=$\frac{π}{2}$,若角A、B、C的对边a、b、c成等差数列,则a:b:c=3:4:5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}中,an=-3n+1,则首项a1和公差d的值分别为(  )
A.1,-3B.-2,-3C.2,3D.-3,1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)的值域是$[\frac{3}{8},\frac{4}{9}]$,则函数y=f(x)+$\sqrt{1-2f(x)}$的值域为[$\frac{7}{9},\frac{7}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若变量x,y满足$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{4y≥5}\end{array}\right.$,则x2+y2的最小值为$\frac{17}{8}$.

查看答案和解析>>

同步练习册答案