精英家教网 > 高中数学 > 题目详情
(2012•黄州区模拟)如图,直线l⊥平面α,垂足为O,已知在直角三角形ABC中,BC=1,AC=2,AB=
5
.该直角三角形在空间做符合以下条件的自由运动:(1)A∈l,(2)C∈α.则B、O两点间的最大距离为
1+
2
1+
2
分析:先将原问题转化为平面内的最大距离问题解决,以O为原点,OA为y轴,OC为x轴建立直角坐标系,B、O两点间的距离表示处理,结合三角函数的性质求出其最大值即可.
解答:解:将原问题转化为平面内的最大距离问题解决,
以O为原点,OA为y轴,OC为x轴建立直角坐标系,如图.
设∠ACO=θ,B(x,y),则有:x=ACcosθ+BCsinθ=2cosθ+
sinθ,y=BCcosθ=cosθ.
∴x2+y2=4cos2θ+4sinθcosθ+1=2cos2θ+2sin2θ+3=2
2
sin(2θ+
π
4
)+3,
当sin(2θ+
π
4
)=1时,x2+y2最大,为2
2
+3,
则B、O两点间的最大距离为1+
2

故答案为:1+
2
点评:本题考查了点、线、面间的距离计算,解答关键是将空间几何问题转化为平面几何问题解决,利用三角函数的知识求最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知某几何体的三视图如图,则该几何体的表面积为
3+
2
+
3
3+
2
+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知函数f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,则f(f(27))=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g(x)=2lnx+f(x)在点(b,g(b))处切线的斜率的最小值是(  )

查看答案和解析>>

同步练习册答案