精英家教网 > 高中数学 > 题目详情
已知正三棱柱ABC-A1B1C1的每条棱长均为a,M为棱A1C1上的动点.
(1)当M在何处时,BC1∥平面MB1A,并证明之;
(2)在(1)下,求平面MB1A与平面ABC所成的二面角的大小;
(3)求B-AB1M体积的最大值.
分析:(I)当M在A1C1中点时,BC1∥平面MB1A.连接NB1并延长与CB延长线交于G,在△CGN中,利用BC1为中位线得BC1∥GN,从而可证BC1∥平面MAB1
(II)可证∠MAC为平面MB1A与平面ABC所成二面角的平面角,进而可求;
(Ⅲ)设动点M到平面A1ABB1的距离为hM,利用等体积进行转化,从而可求B-AB1M体积最大值.
解答:解:(I)当M在A1C1中点时,BC1∥平面MB1A
∵M为A1C1中点,延长AM、CC1,使AM与CC1延长线交于N,则NC1=C1C=a
连接NB1并延长与CB延长线交于G,则BG=CB,NB1=B1G     (2分)
在△CGN中,BC1为中位BC1∥GN
又GN?平面MAB1,∴BC1∥平面MAB1 (4分)
(II)∵△AGC中,BC=BA=BG∴∠GAC=90°
即AC⊥AG     又AG⊥AA1    AA1∩AC=A∴AG⊥平面A1ACC1,AG⊥AM(6分)
∴∠MAC为平面MB1A与平面ABC所成二面角的平面角∴tan∠MAC=
a
1
2
a
=2

∴所求二面角为 arctan2.(8分)
(Ⅲ)设动点M到平面A1ABB1的距离为hMVB-AB1M=VM-AB1B=
1
3
S△ABB1hM=
1
3
1
2
a2hM
1
6
a2
3
2
a=
3
12
a3

即B-AB1M体积最大值为
3
12
a3
.此时M点与C1重合.   (12分)
点评:本题以正三棱柱为载体,考查线面平行,考查面面角,同时考查了几何体的体积,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1的底面边长为1,高为h(h>2),动点M在侧棱BB1上移动.设AM与侧面BB1C1C所成的角为θ.
(1)当θ∈[
π
6
π
4
]
时,求点M到平面ABC的距离的取值范围;
(2)当θ=
π
6
时,求向量
AM
BC
夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1,底面边长为8,对角线B1C=10,
(1)若D为AC的中点,求证:AB1∥平面C1BD;
(2)若CD=2AD,BP=λPB1,当λ为何值时,AP∥平面C1BD;
(3)在(1)的条件下,求直线AB1到平面C1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D;
(3)求二面角B-AB1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为棱A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小;
(Ⅲ)在(Ⅱ)的条件下,求点C1到面PAC的距离.

查看答案和解析>>

同步练习册答案