精英家教网 > 高中数学 > 题目详情
2.设集合M={1,2,3,4,5,6},S1、S2、…、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj}(i≠j,i、j∈{1,2,3,…,k}),都有min$\{\frac{a_i}{b_i},\frac{b_i}{a_i}\}$≠min$\{\frac{a_j}{b_j},\frac{b_j}{a_j}\}$(min{x,y}表示两个数x、y中的较小者).则k的最小值是(  )
A.10B.11C.12D.13

分析 根据题意,首先分析出M的所有含2个元素的子集数目,进而对其特殊的子集分析排除,注意对min$\{\frac{a_i}{b_i},\frac{b_i}{a_i}\}$≠min$\{\frac{a_j}{b_j},\frac{b_j}{a_j}\}$(min{x,y}表示两个数x、y中的较小者)的把握,即可得答案.

解答 解:根据题意,对于M,含2个元素的子集有15个,
但{1,2}、{2,4}、{3,6}只能取一个;
{1,3}、{2,6}只能取一个;
{2,3}、{4,6}只能取一个,
故满足条件的两个元素的集合有11个;
故选B.

点评 本题考查学生对集合及其子集、元素的把握、运用,注意对题意的分析,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{-{2}^{x}+1}{{2}^{x}+1}$.
(1)判断并证明函数f(x)的单调性;
(2)若f(32a+1)<f(($\frac{1}{3}$)4-a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{-2}{x-1}$.
(1)求证:f(x)在[2,3]上是增函数;
(2)求f(x)在[2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{5}{2}x-1,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,若|f(x)|≥ax+1,则实数a的取值范围是$[-\frac{5}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=|x-a|的单调递减区间是(-∞,4],则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{1+x}{1-x}$,不等式f(x)>0的解集记为A,f[f(x)]<0的解集记为B.则(  )
A.A=BB.A⊆BC.A?BD.A∩B≠∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{1}{3}$x3-x2+ax+3(a∈R)有两个极值点x1,x2(x1<x2),则(  )
A.f(x1)≤3,f(x2)<$\frac{10}{3}$B.f(x1)≤3,f(x2)>$\frac{10}{3}$C.f(x1)≥3,f(x2)<$\frac{10}{3}$D.f(x1)≥3,f(x2)>$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.实数p为何值时,对任意实数x,不等式-9<$\frac{3{x}^{2}+6x+p}{{x}^{2}-x-1}$≤6恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2+2ax+2在区间[4,+∞)上是增函数,则实数a的取值范围是[-4,+∞).

查看答案和解析>>

同步练习册答案