精英家教网 > 高中数学 > 题目详情

对于任意定义在上的函数,若实数满足,则称是函数的一个不动点.若二次函数没有不动点,则实数的取值范围是       .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对于任意x∈R,存在M使不等式|f(x)|≤M|x|恒成立(其中M是与x无关的正常数),则称函数f(x)为有界泛函,给出下列函数:
①f1(x)=1;
f2(x)=x2
f4(x)=
xx2+x+1

④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f1(x)-f2(x)|≤2|x1-x2|,其中属于有界泛函的是
③④
③④
(填上正确序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012年高考(湖北理))定义在上的函数,如果对于任意给定的等比数列,

是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函

数:①;   ②;    ③;    ④.

则其中是“保等比数列函数”的的序号为  (  )

A.① ② B.③ ④ C.① ③ D.② ④ 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知是定义在上的不恒为零的函数,且对于任意实数都有, 则

(A)是奇函数,但不是偶函数         (B)是偶函数,但不是奇函数

(C)既是奇函数,又是偶函数         (D)既非奇函数,又非偶函

查看答案和解析>>

同步练习册答案