精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.

(1)y=-2    (2)[1,+∞)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在区间上的值域;
(2)是否存在实数a,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线处的切线方程是.
(1)求的解析式;
(2)求曲线过点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)时,求最小值;
(2)若是单调减函数,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sinx,g(x)=mx- (m为实数).
(1)求曲线y=f(x)在点P(),f()处的切线方程;
(2)求函数g(x)的单调递减区间;
(3)若m=1,证明:当x>0时,f(x)<g(x)+.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数的图象在点处的切线垂直于轴.
(1)求实数的值;
(2)求的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线 y = x3 + x-2 在点 P0 处的切线  平行直线
4x-y-1=0,且点 P0 在第三象限,
求P0的坐标; ⑵若直线  , 且 l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当图象是否存在不同的两点A、B具有(2)问中所得出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)讨论内和在内的零点情况.
(2)设内的一个零点,求上的最值.
(3)证明对恒有.[来

查看答案和解析>>

同步练习册答案