已知函数,.
(1)讨论在内和在内的零点情况.
(2)设是在内的一个零点,求在上的最值.
(3)证明对恒有.[来
(1)在内有唯一零点;在内无零点.(2) 在有最大值;在的最小值.(3)详见解析.
解析试题分析:(1)首先求导确定在、内的单调性,然后根据零点判定定理确定的零点情况; (2)求导得,所以 在有最大值,又是在内的一个零点,所以在的最大值为.再由(1)的结论知在的最小值应为.由知,于是在的最小值. (3)由(2)知时,有,即
,得,再将左右两边放缩相加即得.
(1)在有唯一零点,易知在单增而在
内单减,且,故在和内都至多有一个零点.
又,
故在内有唯一零点;
再由知在内无零点.
(2)由(1)知在有最大值,
故在有最大值;
再由(1)的结论知在的最小值应为.
由知,于是在的最小值.
(3)由(2)知时,有,即
①
取,则且,将的值代入①中,可得
②
再由,得
③
相仿地,时,,故
④
而时④即
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,为的导函数。 (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围;
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数在上的最大值为().
(1)求数列的通项公式;
(2)求证:对任何正整数n (n≥2),都有成立;
(3)设数列的前n项和为Sn,求证:对任意正整数n,都有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=ln x-p(x-1),p∈R.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求证:当p≤-时,有g(x)≤0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com