精英家教网 > 高中数学 > 题目详情

设函数上的最大值为).
(1)求数列的通项公式;
(2)求证:对任何正整数n (n≥2),都有成立;
(3)设数列的前n项和为Sn,求证:对任意正整数n,都有成立.

(1);(2)详见解析;(3)详见解析.

解析试题分析:(1)先求得,令,得,因为要考虑根与定义域的位置关系,故需讨论n的取值.当时,,此时,函数单调递减;当时,,将定义域分段,并考虑导函数符号,划分单调区间,判断函数大致图象,进而求最大值,从而求得;(2)由(1)得,将所求证不等式等价变形为,,再利用二项式定理证明;(3)由(2)得,,再将不等式放缩为可求和的数列问题处理.
(1)

时,由,         
时,则时,上单调递减,
所以
时,时,时,
处取得最大值,即
综上所述,.
(2)当时,要证,只需证明


,所以,当时,都有成立.
(3)当时,结论显然成立;
时,由(II)知



所以,对任意正整数,都有成立.                    13分
考点:1、利用导数求函数的最值;2、二项式定理;3、放缩法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线 y = x3 + x-2 在点 P0 处的切线  平行直线
4x-y-1=0,且点 P0 在第三象限,
求P0的坐标; ⑵若直线  , 且 l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)讨论内和在内的零点情况.
(2)设内的一个零点,求上的最值.
(3)证明对恒有.[来

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若当时,函数的最大值为,求的值;
(2)设为函数的导函数),若函数上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)证明:
(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值;
(2)若的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数R,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+(a-2)x+c的图象如图所示.

(1)求函数y=f(x)的解析式;
(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案