精英家教网 > 高中数学 > 题目详情
a
=(m,n),
b
=(g,h),定义两个向量
a
b
之间的运算“*”:
a
*
b
=(mg-nh,mh-ng)若
c
=(1,2),
c
*
d
=(-3,-4),则
d
=
 
考点:平面向量的坐标运算
专题:平面向量及应用
分析:利用
a
*
b
=(mg-nh,mh-ng)即可得出.
解答: 解:设
d
=(x,y),
c
=(1,2),
c
*
d
=(-3,-4),
∴(x-2y,2x-y)=(-3,-4),
x-2y=-3
2x-y=-4

解得
x=-
5
3
y=
2
3

d
=(-
5
3
2
3
)

故答案为:(-
5
3
2
3
)
点评:本题考查了新定义
a
*
b
=(mg-nh,mh-ng),属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=x+yi(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x,等差数列{an}的公差为2,a1=1,则log2[f(a1)•f(a2)…f(a10)]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1)和点B(-1,-5)在曲线C:y=ax3+bx2+d(a,b,d为常数)上,若曲线C在点A、B处的切线互相平行,则a-b+d=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:关于x的不等式x3-3|a|x+2≤0在(0,+∞)内有解;q:只有一个实数x满足不等式x2+2ax+2a≤0,若“p或q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知函数y=Asin(ωx+φ)(ω>0)的图象(的部分),则函数的表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等腰直角三角形的直角边长为2,则以斜边所在的直线为轴旋转一周所成的几何体体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则y=f(x)的图象可由函数g(x)=sinx的图象(纵坐标不变)(  )
A、先把各点的横坐标缩短到原来的
1
2
倍,再向右平移
π
6
个单位
B、先把各点的横坐标伸长到原来的2倍,再向右平移
π
12
个单位
C、先向右平移
π
12
个单位,再把各点的横坐标伸长到原来的2倍
D、先向右平移
π
6
个单位,再把各点的横坐标缩短到原来的
1
2

查看答案和解析>>

同步练习册答案