精英家教网 > 高中数学 > 题目详情
等差数列{an}中,若S9=9,则a4+a6=( )
A.0
B.1
C.2
D.3
【答案】分析:(法一)用公式,解a1+a9=2,利用性质可得a4+a6=a1+a9=2
(法二)用公式,解得a1+4d=1,而a4+a6=2(a1+4d)=2
解答:解:(法一)设等差数列的首项为a1
由等差数列的前n项和可得
所以a1+a9=2
又因为a4+a6=a1+a9
所以a4+a6=2
(法二)设等差数列的公差d,首项为a1
⇒a1+4d=1
∴a4+a6=a1+3d+a1+5d=2(a1+4d)=2
故选 C
点评:本题主要考查了等差数列的性质及前n项和公式的综合运用,由于等差数列的和公式有两个表达形式,合理的选择公式是解决问题的关键,其中(法一)是利用公式,整体代入可求a1+a9的值,然后运用等差数列的性质m+n=p+q,则an+am=ap+aq;(法二)利用等差数列的和公式,利用整体思想求解
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案