精英家教网 > 高中数学 > 题目详情
16.在△ABC中,∠B=$\frac{π}{3}$,b=$\sqrt{3}$.求a+2c的范围.

分析 由条件利用正弦定理可得2c+a=4sinC+2sinA=2$\sqrt{7}$sin(A+θ),(θ为锐角,且tanθ=$\frac{\sqrt{3}}{2}$),结合θ<A+θ<$\frac{2π}{3}$+θ,以及正弦函数的值域,求得a+2c的取值范围.

解答 解:△ABC中,∠B=$\frac{π}{3}$,b=$\sqrt{3}$,
设三角形外接圆的直径为2r,
则由正弦定理可得2r=$\frac{b}{sinB}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
a+2c=4sinC+2sinA=2[2sin($\frac{2π}{3}$-A)+sinA]
=2($\sqrt{3}$cosA+2sinA)=2$\sqrt{7}$sin(A+θ),(θ为锐角,且tanθ=$\frac{\sqrt{3}}{2}$),
由0<A<$\frac{2π}{3}$,θ<A+θ<$\frac{2π}{3}$+θ,当A+θ=$\frac{π}{2}$时,sin(A+θ)=1,
sinθ=$\frac{\sqrt{3}}{\sqrt{7}}$,sin($\frac{2π}{3}$+θ)=$\frac{\sqrt{3}}{2}$cosθ-$\frac{1}{2}$sinθ=$\frac{\sqrt{3}}{2}$×$\frac{2}{\sqrt{7}}$-$\frac{1}{2}$×$\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{3}}{2\sqrt{7}}$,
即有2$\sqrt{7}$sin(A+θ)∈($\sqrt{3}$,2$\sqrt{7}$].
则a+2c的范围是($\sqrt{3}$,2$\sqrt{7}$].

点评 本题主要考查正弦定理的应用以及辅助角公式的应用.解决这类问题的关键在于对公式的熟练掌握以及灵活运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.有以下四个说法:
①在△ABC中,若sinA=cosB,则△ABC是直角三角形;
②在△ABC中,若∠A>∠B,则sinA>sinB;
③若实数x,y满足x2+y2=1,且S=x+2y,则S的取值范围是[-$\sqrt{5}$,$\sqrt{5}$];
④若实数x,y满足x2-xy+2y2=1,且S=x2+2y2,则S的取值范围是[$\frac{8-2\sqrt{2}}{7}$,$\frac{8+2\sqrt{2}}{7}$].
其中正确的说法有②③④.(把你认为正确的都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.和圆(x-3)2+(y-1)2=36关于直线x+y=0对称的圆的方程是(  )
A.(x+1)2+(y+3)2=36B.(x+1)2+(y+3)2=12C.(x-1)2+(y+3)2=36D.(x-1)2+(y-3)2=12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,a8=4,则a2•a14等于(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≥0}\\{2x+3,x<0}\end{array}\right.$,求f[f(-1)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,以Rt△ABC的直角边AC为直径作圆O交斜边于D,AC=6,AD=2.求BD和BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.甲,乙两人下棋,甲获胜的概率是60%,甲不输的概率是80%,甲、乙和棋的概率是20%.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中正确的是②④
①三角形中三边之比等于相应的三个内角之比;
②在△ABC中,若sinA>sinB,则A>B;
③在△ABC的六个元素中,已知任意三个元素可求其他元素;
④面积公式中S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$absinC=$\frac{1}{2}$acsinB,其实质就是面积公式S=$\frac{1}{2}$ah=$\frac{1}{2}$bh=$\frac{1}{2}$ch(h为对应边上的高
)的变形;
⑤在△ABC中,若b2+c2>a2,则此三角形是锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过抛物线y2=8x的焦点作圆(x-1)2+y2=4的弦,其中最短的弦长为(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

同步练习册答案