| A. | $\frac{14}{3}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{2}{3}$或$\frac{14}{3}$ | D. | -$\frac{3}{2}$ |
分析 作出不等式组对应的平面区域,利用三角形的面积,即可得到结论.
解答
解:作出不等式组对应的平面区域如图,
若对应的区域为三角形,则m<2,
由$\left\{\begin{array}{l}{x=m}\\{x-y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=m}\\{y=m}\end{array}\right.$,即C(m,m),
由$\left\{\begin{array}{l}{x=m}\\{x-2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=m}\\{y=\frac{m+2}{2}}\end{array}\right.$,即B(m,$\frac{m+2}{2}$),
由$\left\{\begin{array}{l}{x-y=0}\\{x-2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
则三角形ABC的面积S=$\frac{1}{2}$×($\frac{m+2}{2}$-m)×(2-m)=$\frac{16}{9}$,
即(2-m)2=$\frac{64}{9}$,
解得2-m=$\frac{8}{3}$,或2-m=-$\frac{8}{3}$,
即m=$-\frac{2}{3}$或m=$\frac{14}{3}$(舍),
故选:B
点评 本题主要考查线性规划的应用,利用数形结合作出对应的图象,利用三角形的面积公式是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com