精英家教网 > 高中数学 > 题目详情

()(本小题满分12分)

某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.

(Ⅰ)求从甲、乙两组各抽取的人数;

(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;

(Ⅲ)求抽取的4名工人中恰有2名男工人的概率.w.w.w.k.s.5.u.c.o.m    

:(I)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.

(II)记表示事件:从甲组抽取的工人中恰有1名女工人,则

                w.w.w.k.s.5.u.c.o.m    

(III)表示事件:从甲组抽取的2名工人中恰有名男工人,

       表示事件:从乙组抽取的2名工人中恰有名男工人,

       表示事件:抽取的4名工人中恰有2名男工人.

       独立, ,且

       

            

              w.w.w.k.s.5.u.c.o.m    

            


解析:

:(Ⅰ)根据分层抽样的比例,可以算出甲组和乙组各抽取的人数; (Ⅱ)从甲组中抽取一名女工人,还需抽取一名男工人,根据古典概型公式可求; (Ⅲ)因为题目没有明确2名男工人从哪一个组中抽取,所以要依据其来源进行讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知关于的一元二次函数  (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为,求函数在区间[上是增函数的概率;(Ⅱ)设点()是区域内的随机点,求函数上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步练习册答案