精英家教网 > 高中数学 > 题目详情
如图所示,向量的模是向量的模的t倍,的夹角为θ,那么我们称向量经过一次(t,θ)变换得到向量.在直角坐标平面内,设起始向量,向量经过n-1次变换得到的向量为,其中为逆时针排列,记Ai坐标为(ai,bi)(i∈N*),则下列命题中不正确的是( )

A.
B.b3k+1-b3k=0(k∈N*
C.a3k+1-a3k-1=0(k∈N*
D.8(ak+4-ak+3)+(ak+1-ak)=0(k∈N*
【答案】分析:利用变换的定义,推导知的向量坐标,然后求出an,bn的表达式,然后进行计算即可.
解答:解:向量,经过1次变换后得到,则,所以,即A正确.
则由题意知=
所以
所以,所以B正确.
=
=,所以C正确.
故错误的是D.
故选D.
点评:本题是新定义题目,首先读懂新定义的实质,转化成我们已有的知识并解决.本题实质考查向量的坐标运算,几何运算,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•九江一模)已知点G是△ABC的外心,
GA
GB
 ,
GC
是三个单位向量,且满足2
GA
+
AB
+
AC
=
0
,|
GA
|=|
AB
|.如图所示,△ABC的顶点B、C分别在x轴和y轴的非负半轴上移动,O是坐标原点,则|
OA
|的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)如图所示,向量
BC
的模是向量
AB
的模的t倍,
AB
BC
的夹角为θ,那么我们称向量
AB
经过一次(t,θ)变换得到向量
BC
.在直角坐标平面内,设起始向量
OA1
=(4,0)
,向量
OA1
经过n-1次(
1
2
3
)
变换得到的向量为
An-1An
(n∈N*,n>1)
,其中AiAi+1Ai+2(i∈N*)为逆时针排列,记Ai坐标为(ai,bi)(i∈N*),则下列命题中不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知五边形ABCDE是边长为1的正五边形,在以A、B、C、D、E五点中任意两点为始点和终点的向量中,模等于2cos36°的向量个数为(    )

A.5                B.10                 C.15               D.20

查看答案和解析>>

科目:高中数学 来源:松江区二模 题型:单选题

如图所示,向量
BC
的模是向量
AB
的模的t倍,
AB
BC
的夹角为θ,那么我们称向量
AB
经过一次(t,θ)变换得到向量
BC
.在直角坐标平面内,设起始向量
OA1
=(4,0)
,向量
OA1
经过n-1次(
1
2
3
)
变换得到的向量为
An-1An
(n∈N*,n>1)
,其中AiAi+1Ai+2(i∈N*)为逆时针排列,记Ai坐标为(ai,bi)(i∈N*),则下列命题中不正确的是(  )
A.b2=
3
B.b3k+1-b3k=0(k∈N*
C.a3k+1-a3k-1=0(k∈N*
D.8(ak+4-ak+3)+(ak+1-ak)=0(k∈N*
精英家教网

查看答案和解析>>

同步练习册答案