【题目】已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn , 且有Sn=2bn﹣1.
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn , {cn}的前n项和为Tn , 求Tn .
【答案】
(1)解:∵{an}是等差数列,且a3=5,a7=13,设公差为d.
∴ ,解得
∴an=1+2(n﹣1)=2n﹣1(n∈N*)
在{bn}中,∵Sn=2bn﹣1
当n=1时,b1=2b1﹣1,∴b1=1
当n≥2时,由Sn=2bn﹣1及Sn﹣1=2bn﹣1﹣1,
得bn=2bn﹣2bn﹣1,∴bn=2bn﹣1
∴{bn}是首项为1公比为2的等比数列
∴ (n∈N*)
(2)解:∵ ,
∴ ① ②
①﹣②得
=
=1+4(2n﹣1﹣1)﹣(2n﹣1)2n=﹣3﹣(2n﹣3)2n
∴ (n∈N*)
【解析】(1)由已知条件利用等差数列的通项公式能求出首项和公差,由此能求出an=2n﹣1(n∈N*);由Sn=2bn﹣1,能推导出{bn}是首项为1公比为2的等比数列,由此求出 (n∈N*).(2)由 ,利用错位相减法能求出{cn}的前n项和为Tn .
【考点精析】本题主要考查了数列的前n项和和等差数列的性质的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布,现从甲校100分以上(含100分)的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,…,200),统计如下:
注:表中试卷编号
(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲、乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为,求随机变量的分布列和期望.
附:若随机变量X服从正态分布则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= ,直线y=m与函数f(x)的图象相交于四个不同的点,从小到大,交点横坐标依次记为a,b,c,d,有以下四个结论 ①m∈[3,4)
②abcd∈[0,e4)
③a+b+c+d∈
④若关于x的方程f(x)+x=m恰有三个不同实根,则m取值唯一.
则其中正确的结论是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com