精英家教网 > 高中数学 > 题目详情
2.设函数y=g(x)在(-∞,+∞)内有定义,对于给定的整数k,定义函数:gk(x)=$\left\{\begin{array}{l}{g(x)(g(x)≤k)}\\{k(g(x)>k)}\end{array}\right.$,取函数g(x)=2-ex-e-x,若对任意x∈(-∞,+∞)恒有gk(x)=g(x),则(  )
A.k的最大值为2-e-$\frac{1}{e}$B.k的最小值为2-e-$\frac{1}{e}$
C.k的最大值为2D.k的最小值为2

分析 由题意知g(x)≤k在(-∞,+∞)上恒成立,从而化为函数的最值问题.

解答 解:∵对任意x∈(-∞,+∞)恒有gk(x)=g(x),
∴g(x)≤k在(-∞,+∞)上恒成立,
∵g(x)=2-ex-e-x,g′(x)=-e+e-x
∴当x∈(-∞,-1)时,g′(x)>0,g(x)为增函数;
当x∈(-1,+∞)时,g′(x)<0,g(x)为减函数;
故gmax(x)=g(-1)=2+e-e=2,
故k≥2;
故选D.

点评 本题考查了分段函数的应用及恒成立问题与最值问题的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.侧棱垂直于底面的棱柱叫作直棱柱,已知直四棱柱的底面是正方形,其所有棱长之和为12,表面积为6,则其体积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求下列各三角函数的值:
cos$\frac{9π}{4}$=$\frac{\sqrt{2}}{2}$;
sin780°=$\frac{\sqrt{3}}{2}$;
sin(-60°)=-$\frac{\sqrt{3}}{2}$;
tan$\frac{8π}{3}$=-$\sqrt{3}$;
sin75°=$\frac{\sqrt{2}+\sqrt{6}}{4}$;
tan45°=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列各式中x的值.
(1)log${\;}_{\sqrt{3}}$9=x.
(2)-lne2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin2θ+sinθ=0,θ∈($\frac{π}{2}$,π),则tan2θ=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程sin2x=cosx,x∈(0,π)的实根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设a>0,b>0,求证:lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].

查看答案和解析>>

同步练习册答案