分析 利用不等式的性质可得$a+b≥2\sqrt{ab}$,进一步得到$1+a+b+ab≥1+2\sqrt{ab}+ab$,即$(1+a)(1+b)≥(1+\sqrt{ab})^{2}$,两边取对数得答案.
解答 证明:∵a>0,b>0,
∴$a+b≥2\sqrt{ab}$,则$1+a+b+ab≥1+2\sqrt{ab}+ab$,
即$(1+a)(1+b)≥(1+\sqrt{ab})^{2}$,
∴lg[(1+a)(1+b)]$≥lg(1+\sqrt{ab})^{2}$,
∴$\frac{1}{2}[lg(1+a)+lg(1+b)]≥lg(1+\sqrt{ab})$,
即lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].
点评 本题考查对数的运算性质,考查了基本不等式的性质,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | k的最大值为2-e-$\frac{1}{e}$ | B. | k的最小值为2-e-$\frac{1}{e}$ | ||
| C. | k的最大值为2 | D. | k的最小值为2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 50 | B. | 100 | C. | 1500 | D. | 2500 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 3 | 4 | 8 |
| y | 3 | 3 | 1 | 0 |
| A. | 1 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e | B. | e2 | C. | 2e | D. | 2e2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com