精英家教网 > 高中数学 > 题目详情
12.设a>0,b>0,求证:lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].

分析 利用不等式的性质可得$a+b≥2\sqrt{ab}$,进一步得到$1+a+b+ab≥1+2\sqrt{ab}+ab$,即$(1+a)(1+b)≥(1+\sqrt{ab})^{2}$,两边取对数得答案.

解答 证明:∵a>0,b>0,
∴$a+b≥2\sqrt{ab}$,则$1+a+b+ab≥1+2\sqrt{ab}+ab$,
即$(1+a)(1+b)≥(1+\sqrt{ab})^{2}$,
∴lg[(1+a)(1+b)]$≥lg(1+\sqrt{ab})^{2}$,
∴$\frac{1}{2}[lg(1+a)+lg(1+b)]≥lg(1+\sqrt{ab})$,
即lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].

点评 本题考查对数的运算性质,考查了基本不等式的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数y=g(x)在(-∞,+∞)内有定义,对于给定的整数k,定义函数:gk(x)=$\left\{\begin{array}{l}{g(x)(g(x)≤k)}\\{k(g(x)>k)}\end{array}\right.$,取函数g(x)=2-ex-e-x,若对任意x∈(-∞,+∞)恒有gk(x)=g(x),则(  )
A.k的最大值为2-e-$\frac{1}{e}$B.k的最小值为2-e-$\frac{1}{e}$
C.k的最大值为2D.k的最小值为2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则S100=(  )
A.50B.100C.1500D.2500

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点(1,3)且与原点的距离为1的直线方程共有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.学生甲根据已知的数据求出线性回归方程为y=-$\frac{6}{13}$x+$\frac{50}{13}$,学生乙抄下了数据表与方程,但是后来甲发现乙抄录的数据表(如表)中有一组符合方程的数据中的y错了,则错误的y对应的x的值是(  )
x1348
y3310
A.1B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.掷一枚均匀的硬币10次,则出现正面的次数多于反面次数的概率为$\frac{193}{512}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于函数y=-2sin(2x+$\frac{π}{3}$)的象有以下四个结论:①振幅是-2;②最小正周期是π;③直线x=$\frac{π}{12}$是它的一条对称轴;④图象关于点($\frac{π}{3}$,0)对称.
其中正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,an>0,且a1•a10=27,log3a2+log3a9等于(  )
A.9B.6C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax-lnx,当x∈(0,e](e为自然常数)时,函数f(x)的最小值为3,则a的值为(  )
A.eB.e2C.2eD.2e2

查看答案和解析>>

同步练习册答案