精英家教网 > 高中数学 > 题目详情
3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则S100=(  )
A.50B.100C.1500D.2500

分析 设等差数列{an}和{$\sqrt{{S}_{n}}$}的公差都为d,从而可得$\sqrt{{a}_{1}}$+d=$\sqrt{{a}_{1}+{a}_{1}+d}$,化简可得a1+2$\sqrt{{a}_{1}}$d+d2=2a1+d,再由a1+4$\sqrt{{a}_{1}}$d+4d2=3a1+3d,从而可得d(2d-1)=0,从而解得.

解答 解:设等差数列{an}和{$\sqrt{{S}_{n}}$}的公差都为d,
则$\sqrt{{S}_{2}}$=$\sqrt{{a}_{1}}$+d=$\sqrt{{a}_{1}+{a}_{1}+d}$,
两边平方可得,a1+2$\sqrt{{a}_{1}}$d+d2=2a1+d,
同理可得,a1+4$\sqrt{{a}_{1}}$d+4d2=3a1+3d,
联立消a1可得:d(2d-1)=0,
故d=0或d=$\frac{1}{2}$,
故d=0时,a1=0,故不成立;
当d=$\frac{1}{2}$时,a1=$\frac{1}{4}$,成立;
故S100=100a1+$\frac{100×99}{2}$×d
=100($\frac{1}{4}$+$\frac{99}{4}$)=2500,
故选:D.

点评 本题考查了数列的性质的判断与应用,同时考查了方程的思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.求下列各三角函数的值:
cos$\frac{9π}{4}$=$\frac{\sqrt{2}}{2}$;
sin780°=$\frac{\sqrt{3}}{2}$;
sin(-60°)=-$\frac{\sqrt{3}}{2}$;
tan$\frac{8π}{3}$=-$\sqrt{3}$;
sin75°=$\frac{\sqrt{2}+\sqrt{6}}{4}$;
tan45°=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程sin2x=cosx,x∈(0,π)的实根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若x<1,求$\frac{{x}^{2}-2x+2}{2x-2}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-1≤0},B={x|lnx<0},则A∪B=(  )
A.{x|x≤1}B.{x|0<x<1}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知方程x2+$\frac{{y}^{2}}{a-1}$=1,求:当方程表示椭圆时,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设a>0,b>0,求证:lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性.
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0在x∈(0,+∞)上恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

查看答案和解析>>

同步练习册答案