精英家教网 > 高中数学 > 题目详情
18.若x<1,求$\frac{{x}^{2}-2x+2}{2x-2}$的最值.

分析 由题意可得x-1<0,变形可得$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{x-1}{2}$+$\frac{1}{2(x-1)}$,由基本不等式可得.

解答 解:∵x<1,∴x-1<0,
∴$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{(x-1)^{2}+1}{2(x-1)}$
=$\frac{x-1}{2}$+$\frac{1}{2(x-1)}$≤-2$\sqrt{\frac{x-1}{2}•\frac{1}{2(x-1)}}$=-1
当且仅当=$\frac{x-1}{2}$=$\frac{1}{2(x-1)}$即x=0时取等号.
故当x=0时$\frac{{x}^{2}-2x+2}{2x-2}$取最大值-1.

点评 本题考查基本不等式求最值,整体变形凑出可用基本不等式的形式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数y=-2cos(x-$\frac{π}{3}$)的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=2x+1,数列{an}的前n项和Sn=f(n2)-1,数列{bn}满足bn=f(bn-1),且b1=1.
(1)分别求{an},{bn}的通项公式;
(2)记cn=$\frac{{a}_{n}}{2{(b}_{n}+1)}$,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\sqrt{cos(sinx)}$的定义域是R,值域是[$\sqrt{cos1},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a$=(cosα,-2),$\overrightarrow b$=(sinα,1),且$\overrightarrow a$∥$\overrightarrow b$,则2sinαcosα等于(  )
A.3B.-3C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则S100=(  )
A.50B.100C.1500D.2500

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正方形ABCD的边长为6,点E,F分别在边AD,BC上,且DE=EA,CF=2FB,如果对于常数λ,在正方形ABCD的四条边上(不含顶点)有且只有6个不同的点P,使得$\overrightarrow{PE}•\overrightarrow{PF}=λ$成立,那么λ的取值范围为(  )
A.$(-3,-\frac{1}{4})$B.(-3,3)C.$(-\frac{1}{4},3)$D.(3,12)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.学生甲根据已知的数据求出线性回归方程为y=-$\frac{6}{13}$x+$\frac{50}{13}$,学生乙抄下了数据表与方程,但是后来甲发现乙抄录的数据表(如表)中有一组符合方程的数据中的y错了,则错误的y对应的x的值是(  )
x1348
y3310
A.1B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.不等式(a-1)x2-(a-2)x+1>0对一切实数都成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案