精英家教网 > 高中数学 > 题目详情

设AB是单位圆O的直径,N是圆上的动点,过点N的切线与过点A、B的切线分别交于D、C两点.四边形ABCD的对角线AC和BD的交点为G,求G的轨迹.

解:以圆心O为原点,直径AB为x轴建立直角坐标系,
则A(-1,0),B(1,0),单位圆的方程为x2+y2=1,
设N的坐标为(cosθ,sinθ),则切线DC的方程为:xcosθ+ysinθ=1,
由此可得C(1,),D(-1,),
AC的方程为y=(x+1),
BD的方程为y=-(x-1),
将两式相乘得:y2=(x2-1),
即x2+4y2=1
当点N恰为A或B时,四边形ABCD变为线段AB,这不符合题意,所以轨迹不能包括A、B两点,所以G的轨迹方程为x2+4y2=1,(-1<x<1).
分析:要求G的轨迹,需建立直角坐标系,故以圆心O为原点,直径AB为x轴建立直角坐标系,则A(-1,0),B(1,0),单位圆的方程为x2+y2=1,再设出N(cosθ,sinθ),从而得到DC的方程,从而有C、D的坐标与直线AC、BD的方程,继而可求得G的轨迹.
点评:本题考查直线和圆的方程的应用,关键在于建立适当的直角坐标系,求得直线DC、AC、BD的方程,消掉参数即可,易错点在于G的轨迹方程为x2+4y2=1,(-1<x<1),不是整个椭圆,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设AB是单位圆O的直径,N是圆上的动点,过点N的切线与过点A、B的切线分别交于D、C两点.四边形ABCD的对角线AC和BD的交点为G,求G的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设AB是单位圆O的直径,N是圆上的动点,过点N的切线与过点A、B的切线分别交于D、C两点.四边形ABCD的对角线AC和BD的交点为G,求G的轨迹.

查看答案和解析>>

同步练习册答案