精英家教网 > 高中数学 > 题目详情

平面直角坐标系中,O为坐标原点,已知两点A(1,2),B(-3,1).若点P在线段AB上,且数学公式,则数学公式


  1. A.
    最小值-16
  2. B.
    最大值-16
  3. C.
    最大值16
  4. D.
    最小值16
D
分析:设P(x,y),由A(1,2),B(-3,1)可求得直线AB的方程为x-4y+7=0,再由点P在线段AB上,可求得m+n=1,代入,利用基本不等式即可.
解答:设P(x,y),由A(1,2),B(-3,1)得直线AB的斜率k=,由点斜式可得直线AB的方程为x-4y+7=0,
又点P在线段AB上,=m+n
∴(x,y)=m(1,2)+n(-3,1),m>0,n>0
,又x-4y+7=0,
∴(m-3n)-4(2m+n)+7=0,
∴m+n=1.又m>0,n>0,
=()(m+n)=10++≥10+6=16(当且仅当n=3m,即m=,n=时取到“=”).
故选D.
点评:本题考查基本不等式,考查平面向量的基本定理及其意义,正确理解题意,得到m+n=1是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(-1,3),若点C满足
OC
OA
OB
,其中α、β∈R,且α+β=1,则点C的轨迹方程为(  )
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆(如图),在平面直角坐标系中,O为原点,设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),篮球与地面的接触点为H,则|OH|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O(0,0),P(6,8),将向量
OP
按逆时针旋转
π
4
后,得向量
OQ
则点Q的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,O为坐标原点,给定两点A(1,0)、B(0,-2),点C满足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
交于两点M、N,且以MN为直径的圆过原点,求证:
1
a2
+
1
b2
为定值

(3)在(2)的条件下,若椭圆的离心率不大于
2
2
,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区二模)平面直角坐标系中,O为坐标原点,已知两定点A(1,0)、B(0,-1),动点P(x,y)满足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求点P的轨迹方程;
(2)设点P的轨迹与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相异两点M、N.若以MN为直径的圆经过原点,且双曲线C的离心率等于
3
,求双曲线C的方程.

查看答案和解析>>

同步练习册答案