已知函数且
(Ⅰ)试用含的代数式表示;
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数在处取得极值,记点,证明:线段与曲线存在异于、的公共点;
(Ⅰ);(Ⅱ)当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为
(Ⅲ)易得,而的图像在内是一条连续不断的曲线,
故在内存在零点,这表明线段与曲线有异于的公共点
【解析】
试题分析:解法一:(Ⅰ)依题意,得
由得
(Ⅱ)由(Ⅰ)得
故
令,则或
①当时,
当变化时,与的变化情况如下表:
+ |
— |
+ |
|
单调递增 |
单调递减 |
单调递增 |
由此得,函数的单调增区间为和,单调减区间为
②由时,,此时,恒成立,且仅在处,故函数的单调区间为R
③当时,,同理可得函数的单调增区间为和,单调减区间为
综上:
当时,函数的单调增区间为和,单调减区间为;
当时,函数的单调增区间为R;
当时,函数的单调增区间为和,单调减区间为
(Ⅲ)当时,得
由,得
由(Ⅱ)得的单调增区间为和,单调减区间为
所以函数在处取得极值。
故
所以直线的方程为
由得
令
易得,而的图像在内是一条连续不断的曲线,
故在内存在零点,这表明线段与曲线有异于的公共点
解法二:
(Ⅲ)当时,得,由,得
由(Ⅱ)得的单调增区间为和,单调减区间为,所以函数在处取得极值,
故
所以直线的方程为
由得
解得
所以线段与曲线有异于的公共点。
考点:本题考查了导数的运用
点评:本题是在知识的交汇点处命题,将函数、导数、不等式、方程的知识融合在一起进行考查,重点考查了利用导数研究函数的极值与最值等知识.导数题目是高考的必考题,且常考常新,但是无论如何少不了对基础知识的考查,因此备考中要强化基础题的训练.
科目:高中数学 来源: 题型:
(07年福建卷理)(本小题满分14分)已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东省高三第二次(3月)周测理科数学试卷(解析版) 题型:解答题
已知函数 .
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若且对任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.
查看答案和解析>>
科目:高中数学 来源:2014届河北省高二下学期第二次月考理科数学试卷(解析版) 题型:解答题
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.
查看答案和解析>>
科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题
已知函数f(x)=1 .
(1)试讨论函数f(x)的单调性;
(2)若 ,且f(x)在区间[1,3]上的最大值为M(a) ,最小值为N(a),
令g(a)= M(a)-N(a),求 g(a)的表达式,试求g(a)的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com