【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是
,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从
到
)若掷出偶数遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为
,试证明
是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程
中,
.
【答案】(1)
,预计到2022年该公司的网购人数能超过300万人;
(2)约400元.
【解析】
(1)依题意,先求出
,代入公式即可得到
,
,可得回归方程为
,令
,
.所以预计到2022年该公司的网购人数能超过300万;
(2)遥控车移到第
(
)格的情况是下列两种,而且也只有两种.
①遥控车先到第
格,又掷出偶数,其概率为![]()
②遥控车先到第
格,又掷出奇数,其概率为![]()
所以
,即可证得
是等比数列,
利用累加法求出数列
的通项公式,即可求得失败和获胜的概率,从而计算出期望.
解:(1)![]()
![]()
![]()
故
从而![]()
所以所求线性回归方程为
,
令
,解得
.
故预计到2022年该公司的网购人数能超过300万人
(2)遥控车开始在第0格为必然事件,
,第一次掷骰子出现奇数,遥控车移到第一格,其概率为
,即
.遥控车移到第
(
)格的情况是下列两种,而且也只有两种.
①遥控车先到第
格,又掷出奇数,其概率为![]()
②遥控车先到第
格,又掷出偶数,其概率为![]()
所以
,
当
时,数列
是公比为
的等比数列
![]()
以上各式相加,得![]()
![]()
(
),
获胜的概率![]()
失败的概率![]()
设参与游戏一次的顾客获得优惠券金额为
元,
或![]()
X的期望![]()
参与游戏一次的顾客获得优惠券金额的期望值为
,约400元.
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,四棱锥
中,底面
为平行四边形,
,
,
底面
.
![]()
(1)求证:
平面
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若
,求点A到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次数学考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班样本成绩的茎叶图如图所示.
![]()
(1)用样本估计总体,若根据茎叶图计算得甲乙两个班级的平均分相同,求
的值;
(2)从样本中任意抽取3名学生的成绩,若至少有两名学生的成绩相同的概率大于
,则该班成绩判断为可疑.试判断甲班的成绩是否可疑?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
,以坐标原点
为极点,
轴正半轴为极轴,直线
的极坐标方程为
,直线
交圆
于
两点,
为
中点.
(1)求点
轨迹的极坐标方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是
,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从
到
)若掷出偶数遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为
,试证明
是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程
中,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形
中,
,过
分别作
,
,垂足分别为
、
.
,
,已知
,将梯形
沿
,
同侧折起,得空间几何体
,如图2.
![]()
(1)若
,证明:
平面
;
(2)在(1)的条件下,若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是定义在
上的函数,若对任何实数
以及
中的任意两数
、
,恒有
,则称
为定义在
上的
函数.
(1)证明函数
是定义域上的
函数;
(2)判断函数
是否为定义域上的
函数,请说明理由;
(3)若
是定义域为
的函数,且最小正周期为
,试证明
不是
上的
函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
在区间
上的最大值为
,最小值为
,记![]()
;
(1)求实数
、
的值;
(2)若不等式
对任意
恒成立,求实数
的范围;
(3)对于定义在
上的函数
,设
,
,用任意的![]()
将
划分为
个小区间,其中
,若存在一个常数
,使得![]()
恒成立,则称函数
为
上的有界变差函数;
①试证明函数
是在
上的有界变差函数,并求出
的最小值;
②写出
是在
上的有界变差函数的一个充分条件,使上述结论成为其特例;(不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定整数
,数列
、
、
、
每项均为整数,在
中去掉一项
,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为
. 将
、
、
、
中的最小值称为数列
的特征值.
(Ⅰ)已知数列
、
、
、
、
,写出
、
、
的值及
的特征值;
(Ⅱ)若
,当
,其中
、
且
时,判断
与
的大小关系,并说明理由;
(Ⅲ)已知数列
的特征值为
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com