精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上的最大值为,最小值为,记

1)求实数的值;

2)若不等式对任意恒成立,求实数的范围;

3)对于定义在上的函数,设,用任意的划分为个小区间,其中,若存在一个常数,使得恒成立,则称函数上的有界变差函数;

①试证明函数是在上的有界变差函数,并求出的最小值;

②写出是在上的有界变差函数的一个充分条件,使上述结论成为其特例;(不要求证明)

【答案】1;(2;(3)①证明见解析,;②详见解析

【解析】

由已知中在区间的最大值为4,最小值为1,结合函数的单调性及最值,我们易构造出关于ab的方程组,解得ab的值求出对任意恒成立等价于恒成立,求实数k的范围(3)根据有界变差函数的定义,我们先将区间进行划分,进而判断成立,进而得到结论

函数

,对称轴

在区间上是增函数,

函数故在区间上的最大值为4,最小值为1

解得:

故实数a的值为1b的值为0

可知

对任意恒成立,

根据二次函数的图象及性质可得

恒成立,即:

则有:

解得:

得:

故得实数k的范围为

3)①函数上的有界变差函数.

因为函数上的单调递增函数,且对任意划分T

所以

恒成立,

所以存在常数M,使得是恒成立.

M的最小值为4,即.

是在上的有界变差函数的一个充分条件:上单调递增且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心在直线上,又直线与圆C交于P,Q两点.

1)求圆C的方程;

2)若,求实数的值;

(3)过点作直线,且交圆CM,N两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中x=1”表示2015年,x=2”表示2016年,依次类推;y表示人数)

x

1

2

3

4

5

y(万人)

20

50

100

150

180

1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;

2)该公司为了吸引网购者,特别推出玩网络游戏,送免费购物券活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在胜利大本营,则网购者可获得免费购物券500元;若遥控车最终停在失败大本营,则网购者可获得免费购物券200. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从)若掷出偶数遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着通识教育理念的推广及高校课程改革的深入,选修课越来越受到人们的重视.国内一些知名院校在公共选修课的设置方面做了许多有益的探索,并且取得了一定的成果.因为选修课的课程建设处于探索阶段,选修课的教学、管理还存在很多的问题,所以需要在通识教育的基础上制定科学的、可行的解决方案,为学校选修课程的改革与创新、课程设置、考试考核、人才培养提供参考.某高校采用分层抽样法抽取了数学专业的50名参加选修课与不参加选修课的学生的成绩,统计数据如下表:

成绩优秀

成绩不够优秀

总计

参加选修课

16

9

25

不参加选修课

8

17

25

总计

24

26

50

1)试运用独立性检验的思想方法你能否有99%的把握认为学生的成绩优秀与是否参加选修课有关,并说明理由;

2)如果从数学专业随机抽取5名学生,求抽到参加选修课的学生人数的分布列和数学期望(将频率当做概率计算).

参考公式:,其中.

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,若为线段上的动点(不含.

1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;

2)求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,下列个结论正确的是__________(把你认为正确的答案全部写上).

(1)任取,都有

(2)函数上单调递增;

(3),对一切恒成立;

(4)函数个零点;

(5)若关于的方程有且只有两个不同的实根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的最值;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(1)当时,若函数的图象在处有相同的切线,求的值;

(2)当时,若对任意和任意,总存在不相等的正实数,使得,求的最小值;

(3)当时,设函数的图象交于 两点.求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案