【题目】为了比较注射两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,毎组100只,其中一组注射药物,另一组注射药物.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(2)下表1和表2分别是注射药物和后的试验结果.(疱疹面积单位: )
表1:注射药物后皮肤疱疹面积的频数分布表
表2:注射药物后皮肤疱疹面积的频数分布表
(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(ⅱ)完成下面列联表,并回答能否有的把握认为“注射药物后的疱疹面积与注射药物后的疱疹面积有差异”.
表3:
附:
【答案】(1) ;(2)(i)答案见解析;(2)答案见解析.
【解析】试题分析:(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=;(2)(ⅰ)由频数分布表中的频数求出每组的,画出频率分布直方图,可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数,(ⅱ)完成2×2列联表,代入计算随机变量值后与临界点比较,判断能否有的把握认为“注射药物后的疱疹面积与注射药物后的疱疹面积有差异”.
试题解析:
(Ⅰ)甲、乙两只家兔分在不同组的概率为
(Ⅱ)(i)
图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图
可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.
(ii)表3:
由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积于注射药物B后的疱疹面积有差异”。
科目:高中数学 来源: 题型:
【题目】已知直线l:
1证明直线l经过定点并求此点的坐标;
2若直线l不经过第四象限,求k的取值范围;
3若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥A﹣BCFE中,四边形EFCB为梯形,EF∥BC,且EF= BC,△ABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG= ,CF= ,BF= .
(1)证明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点 ,点P是圆 上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为.
()求的顶点、的坐标.
()若圆经过不同的三点、、,且斜率为的直线与圆相切于点,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1 , x2(1)求满足条件的最小正整数a的值;
(Ⅲ)求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m, n是两条不同的直线,是三个不同的平面, 给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;; ②若α∥β, β∥r, m⊥α,则m⊥r;
③若m∥α,n∥α,则m∥n;; ④若α⊥r, β⊥r,则α∥β.
其中正确命题的序号是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com