精英家教网 > 高中数学 > 题目详情
(2012•成都模拟)向量
OA
=(2,0),
OB
=(2+2cosθ,2
3
+2sinθ)
,则向量
OA
OB
的夹角的范围是(  )
分析:利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式求出两个向量的数量积;利用向量的数量积表示出夹角余弦,通过给θ取特殊值排除选项A,D,C得到正确的选项.
解答:解:设
OA
OB
的夹角为α
|
OA
|=2
|
OB
|=
(2+2cosθ)2+(2
3
+2sinθ)
2
=2
5+4sin(θ+
π
6
)

OA
OB
=4+4cosθ

cosα=
OA
OB
|
OA
||
OB
|
=
4+4cosθ
4
5+4sin(θ+
π
6
)
=
1+cosθ
5+4sin(θ+
π
6
)

当θ=π时,cosα=0,所以α=
π
2
;所以可排除选项A,D;
θ=
π
3
时,cosα=
3
2
3
=
1
2
,此时α=
π
3
=
12
,所以排除选项C
故选B.
点评:本题考查向量的模的求法、向量的数量积公式、利用向量的数量积表示向量的夹角余弦.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•成都模拟)设函数f(x)=-
13
x3
+2ax2-3a2x+b(常数a,b满足0<a<1,b∈R).
(1)求函数f(x)的单调区间和极值;
(2)若对任意的x∈[a+1,a+2],不等式|f'(x)|≤a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)定义:若平面点集A中的任一个点(x0,y0),总存在正实数r,使得集合B={(x,y)|
(x-x0)2+(y-y0)2
<r}⊆A
,则称A为一个开集,给出下列集合:
①{(x,y)|x2+y2=1};      
②{(x,y|x+y+2>0)};
③{(x,y)||x+y|≤6};     
{(x,y)|0<x2+(y-
2
)
2
<1}

其中是开集的是
②④
②④
.(请写出所有符合条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)已知函数f(x)=
3
sinx,g(x)=cos(π+x)
,直线x=a与f(x),g(x)的图象分别交于M,N两点,则|MN|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)在锐角△ABC中,已知5
.
AC
.
BC
=4|
.
AC
|•|
.
BC
|,设
m
=(sinA,sinB),
n
=(cosB,-cosA)且
m
n
=
1
5

求:(1)sin(A+B)的值;(2)tanA的值.

查看答案和解析>>

同步练习册答案