精英家教网 > 高中数学 > 题目详情
已知线段AB的端点B的坐标为(1,3),端点A在圆C:(x+1)2+y2=4上运动.
(1)求线段AB的中点M的轨迹;
(2)过B点的直线L与圆C有两个交点A,D.当CA⊥CD时,求L的斜率.
考点:轨迹方程,直线与圆相交的性质
专题:计算题,直线与圆
分析:(1)设出A和M的坐标,利用中点坐标公式把A的坐标用M的坐标表示,代入圆的方程后可求线段AB的中点M的轨迹;
(2)由题意可知L的斜率存在,设出其斜率,结合CA⊥CD,由弦心距和半径的关系得到弦心距,再由圆心到直线的距离公式列式求出直线L的斜率.
解答: 解(1)设A(x1,y1),M(x,y),
由中点公式得x1=2x-1,y1=2y-3
因为A在圆C上,所以(2x)2+(2y-3)2=4,即x2+(y-1.5)2=1.
点M的轨迹是以(0,1.5)为圆心,1为半径的圆;
(2)设L的斜率为k,则L的方程为y-3=k(x-1),即kx-y-k+3=0
因为CA⊥CD,△CAD为等腰直角三角形,
由题意知,圆心C(-1,0)到L的距离为
2

由点到直线的距离公式得
|-k-k+3|
k2+1
=
2

∴4k2-12k+9=2k2+2
∴2k2-12k+7=0,解得k=3±
22
2
点评:本题考查了与直线有关的动点的轨迹方程问题,考查了利用代入法求曲线的方程,解答的关键是正确利用直线和圆的位置关系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上的非零向量
OP1
OP2
OP3
满足
OP1
+
OP2
+
OP3
=
0
,|
OP1
|=|
OP2
|=1,且cos<
OP1
OP2
>=-
4
5
,则△P1P2P3的形状为(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(π-x),x∈R.
(1)求函数f2(x)+cos2(π+x)的值;
(2)若f(α)=
3
5
,α∈[0,
π
2
],求f(α-
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.
(1)求三棱锥A1-BCD的体积.
(2)求证:A1C⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右焦点分别为F1、F2,抛物线y2=4
3
x的焦点F恰好是该椭圆的一个焦点.
(1)求椭圆方程;
(2)过椭圆的左顶点A作两条弦AM、AN分别交椭圆于M、N两点,满足
AM
AN
=0,当点M在椭圆上运动时,直线MN是否经过x轴上的一定点,若过定点,请给出证明,并求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD中,E、F分别是BC,DC的中点,若
AB
=
a
AD
=
b
,试用
a
b
,表示
DE
BF

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(Ⅰ)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值;
(Ⅱ)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|-3≤x<1},函数f(x)=log2(x+3)的定义域为B,求:
(1)A∩B,A∪B;
(2)A∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax+2(a∈R),在x=
1
2
时取得极值.
(Ⅰ)求a的值;
(Ⅱ)若F(x)=λx2-3x+2-f(x)(λ>0)有唯一零点,求λ的值.

查看答案和解析>>

同步练习册答案