精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(Ⅰ)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值;
(Ⅱ)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.
考点:利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(Ⅰ)求导数,确定函数的单调性,即可求函数F(x)的极值点及相应的极值;
(Ⅱ)问题转化为(x2+1)ln(x2+1)-ax22-x2<0,在(0,+∞)上恒成立,再分类讨论,即可求a的取值范围.
解答: 解:(Ⅰ)F(x)=f(x)-g(x)=(x+1)ln(x+1)-x,F′(x)=ln(x+1),x∈(-1,0)F′(x)<0,F(x)为减函数;x∈(0,+∞),F′(x)>0,F(x)为增函数,
所以F(x)只有一个极小值点x=0,极小值为0.…(4分)
(Ⅱ) 设G(x)=ln(x+1)-f(x2)=ln(x+1)-[(x2+2)ln(x2+1)-ax22-x2]
依题意即求 G(x)在(-1,x2)上存在零点时a的取值范围.
又当x→-1时,G(x)→-∞,且G(x)在定义域内单调递增,
所以只需要G(x2)>0在(0,+∞)上恒成立.
ln(x2+1)-[(x2+2)ln(x2+1)-ax22-x2]>0,在(0,+∞)上恒成立.
(x2+1)ln(x2+1)-ax22-x2<0,在(0,+∞)上恒成立.…(7分)
1°若a=0,显然不成立,因为由第一问知F(x)=(x+1)ln(x+1)-x在(0,+∞)为增函数,
故F(x)>F(0)=0;
2°∵x+1>0,即ln(x+1)-
ax2+x
x+1
<0
在(0,+∞)恒成立,
不妨设h(x)=ln(x+1)-
ax2+x
x+1
,x∈(0,+∞)h(x)=
x(-ax+1-2a)
(x+1)2
,x∈(0,+∞)
h(x)=
x(-ax+1-2a)
(x+1)2
=0,x1=0,x2=
1-2a
a
,…(9分)
若a<0,则x2=
1-2a
a
<0
,若x>0,h′(x)>0,所以h(x)为增函数,h(x)>h(0)=0(不合题意),
0<a<
1
2
,若x∈(0,
1-2a
a
)
,h′(x)>0,h(x)为增函数,h(x)>h(0)=0(不合题意),
a≥
1
2
,若x∈(0,+∞),h′(x)<0,h(x)为减函数,h(x)<h(0)=0(符合题意),
综上所述,若x>0时,h(x)<0f(x)<0恒成立,
a≥
1
2
.…(12分)
点评:本小题主要考查函数恒成立问题、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,D是△ABC边BC的中点,
BA
=
a
AC
=
b
,已知
AD
a
b
,则(  )
A、λ=μ=
1
2
B、λ=-
1
2
,μ=
1
2
C、λ=μ=-
1
2
D、λ=
1
2
,μ=-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个焦点将长轴分成2:1的两个部分,且经过点(-3
2
,4),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线段AB的端点B的坐标为(1,3),端点A在圆C:(x+1)2+y2=4上运动.
(1)求线段AB的中点M的轨迹;
(2)过B点的直线L与圆C有两个交点A,D.当CA⊥CD时,求L的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),且x∈[
π
2
2
].
(1)求
a
b
及|
a
+
b
|;
(2)求函数f(x)=
a
b
-|
a
+
b
|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),抛物线上纵坐标为1的点到焦点的距离为p,过点M(1,0)作斜率为k的直线l交抛物线于A,B两点,A点关于x轴的对称点为C,直线BC交x轴于Q点.
(Ⅰ)求p的值;
(Ⅱ)探究:当k变化时,点Q是否为定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:四棱锥P-ABCD中,PA⊥AD,AB=AC=2PA=2,PC=
5

AD∥BC,∠BAD=150°.
(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年春节期间,高速公路车辆剧增,高速公路管理测控中心在一特定位置从七座以下小型汽车中按先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆进行电子测速调查,将它们的车速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如图的频率分布直图.
(1)测控中心在采样中,用到的是什么抽样方法?并估计这40辆车车速的平均数;
(2)从车速在[80,90)的车辆中任抽取2辆,求抽出的2辆车中车速在[85,90)的车辆数的概率.参考数据:82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,AC∩BD=H.沿EF将△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED.

(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:(提示:设OH=x)
(ⅰ)求四棱锥P-BDEF的体积;
(ⅱ)若点Q在线段AP上,试探究:直线OQ与平面E所成角是否一定大于或等于45°?并说明你的理由.

查看答案和解析>>

同步练习册答案