精英家教网 > 高中数学 > 题目详情
从圆O:x2+y2=4上任意一点P向x轴作垂线,垂足为P′,点M是线段PP′的中点,则点M的轨迹方程是(  )
A.
9x2
16
+
y2
4
=1
B.
9y2
16
+
x2
4
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1
由题意,令M(x,y),则P(x,2y),
又圆O:x2+y2=4上任意一点P
∴x2+(2y)2=4,整理得
x2
4
+y2=1

故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,一曲线E过点C,且曲线E上任一点到A,B两点的距离之和不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)设点Q是曲线E上的一动点,求线段QA中点的轨迹方程;
(3)设M,N是曲线E上不同的两点,直线CM和CN的倾斜角互补,试判断直线MN的斜率是否为定值.如果是,求这个定值;如果不是,请说明理由.
(4)若点D是曲线E上的任一定点(除曲线E与直线AB的交点),M,N是曲线E上不同的两点,直线DM和DN的倾斜角互补,直线MN的斜率是否为定值呢?如果是,请你指出这个定值.(本小题不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的中心在原点,焦点在x轴上,离心率为
2
,且经过点(4,-
10
).
(Ⅰ)求双曲线C的方程;
(Ⅱ)设F1、F2为双曲线C的左、右焦点,若双曲线C上一点M满足F1M⊥F2M,求△MF1F2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|
F1Q
|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
PT
TF2
=0
,|
TF2
|≠0.
(1)求证:|PQ|=|PF2|;
(2)求点T的轨迹C的方程;
(3)若椭圆的离心率e=
3
2
,试判断轨迹C上是否存在点M,使△F1MF2的面积S=b2,若存在,请求出∠F1MF2的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右两焦点分别为F1,F2,p是椭圆上一点,且在x轴上方,PF2⊥F1F2,PF2=λPF1,λ∈[
1
3
1
2
].
(1)求椭圆的离心率e的取值范围;
(2)当e取最大值时,过F1,F2,P的圆Q的截y轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线l上任一点A引圆Q的两条切线,切点分别为M,N.试探究直线MN是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

AB是过抛物线x2=y的焦点一条弦,若AB的中点到x轴的距离为1,则弦AB的长度为(  )
A.
5
2
B.
5
4
C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点M(1,1)作一直线与椭圆
x2
9
+
y2
4
=1相交于A,B两点,若M点恰好为弦AB的中点,则AB所在直线的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=x+2,与抛物线x2=y交于A(xA,yA),B(xB,yB)两点,l与x轴交于点C(xC,0).
(1)求证:
1
xA
+
1
xB
=
1
xC

(2)求直线l与抛物线所围平面图形的面积;
(3)某同学利用TI-Nspire图形计算器作图验证结果时(如图1所示),尝试拖动改变直线l与抛物线的方程,发现
1
xA
+
1
xB
1
xC
的结果依然相等(如图2、图3所示),你能由此发现出关于抛物线的一般结论,并进行证明吗?

查看答案和解析>>

同步练习册答案