精英家教网 > 高中数学 > 题目详情
已知直线l:y=x+2,与抛物线x2=y交于A(xA,yA),B(xB,yB)两点,l与x轴交于点C(xC,0).
(1)求证:
1
xA
+
1
xB
=
1
xC

(2)求直线l与抛物线所围平面图形的面积;
(3)某同学利用TI-Nspire图形计算器作图验证结果时(如图1所示),尝试拖动改变直线l与抛物线的方程,发现
1
xA
+
1
xB
1
xC
的结果依然相等(如图2、图3所示),你能由此发现出关于抛物线的一般结论,并进行证明吗?
(1)证明:由
y=x+2
x2=y
,解得
x=-1
y=1
x=2
y=4
…(2分)
不妨设xA=-1,xB=2,
对于直线l,令y=0,得xC=-2…(3分)
左边=
1
xA
+
1
xB
=-1+
1
2
=-
1
2
,右边=
1
xC
=-
1
2

左边=右边,原命题得证…(4分)
(2)S=
2-1
(x+2-x2)dx=
x2
2
+2x-
x3
3
|2-1
=(2+4-
8
3
)-(
1
2
-2+
1
3
)=
9
2
…(7分)
(3)结论:已知直线l:y=kx+b,与抛物线x2=y交于A(xA,yA),B(xB,yB)两点,l与x轴交于点C(xC,0),则
1
xA
+
1
xB
=
1
xC
…(9分)
证明:
y=kx+b
x2=y
,x2-kx-b=0,xA+xB=k,xAxB=-b…(11分)
对于直线l,令y=0,得xC=-
b
k
…(12分)
左边=
1
xA
+
1
xB
=
xA+xB
xAxB
=
k
-b
=-
k
b
,右边=
1
xC
=
1
-
b
k
=-
k
b

左边=右边,原命题得证…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

从圆O:x2+y2=4上任意一点P向x轴作垂线,垂足为P′,点M是线段PP′的中点,则点M的轨迹方程是(  )
A.
9x2
16
+
y2
4
=1
B.
9y2
16
+
x2
4
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的两顶点为A(
2
,0)
,B(0,1),该椭圆的左右焦点分别是F1,F2
(1)在线段AB上是否存在点C,使得CF1⊥CF2?若存在,请求出点C的坐标;若不存在,请说明理由.
(2)设过F1的直线交椭圆于P,Q两点,求△PQF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py过点P(1,
1
2
)
,直线l交C于A,B两点,过点P且平行于y轴的直线分别与直线l和x轴相交于点M,N.
(1)求p的值;
(2)是否存在定点Q,当直线l过点Q时,△PAM与△PBN的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某圆锥曲线有下列信息:
①曲线是轴对称图形,且两坐标轴都是对称轴;
②焦点在x轴上且焦点到坐标原点的距离为1;
③曲线与坐标轴的交点不是两个;
④曲线过点A(1,
3
2
).
(1)判断该圆锥曲线的类型并求曲线的方程;
(2)点F是改圆锥曲线的焦点,点F′是F关于坐标原点O的对称点,点P为曲线上的动点,探求以|PF|以及|PF|•|PF′|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)有两个顶点在直线x+2y-2=0上
(1)求椭圆C的方程;
(2)当直线l:y=x+m与椭圆C相交时,求m的取值范围;
(3)设直线l:y=x+m与椭圆C交于A,B两点,O为坐标原点,若以为AB直径的圆过原点,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点F的距离为
17
4

(1)求P与m的值;
(2)若直线l过焦点F交抛物线于P,Q两点,且|PQ|=5,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).
(1)F为抛物线C的焦点,若|AM|=
5
4
|AF|,求k的值;
(2)如果抛物线C上总存在点Q,使得QA⊥QB,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,左右焦点分别为F1,F2,离心率为
2
,且过点(4,-
10
)

(1)求此双曲线的标准方程;
(2)若直线系kx-y-3k+m=0(其中k为参数)所过的定点M恰在双曲线上,求证:F1M⊥F2M.

查看答案和解析>>

同步练习册答案