精英家教网 > 高中数学 > 题目详情
如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,一曲线E过点C,且曲线E上任一点到A,B两点的距离之和不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)设点Q是曲线E上的一动点,求线段QA中点的轨迹方程;
(3)设M,N是曲线E上不同的两点,直线CM和CN的倾斜角互补,试判断直线MN的斜率是否为定值.如果是,求这个定值;如果不是,请说明理由.
(4)若点D是曲线E上的任一定点(除曲线E与直线AB的交点),M,N是曲线E上不同的两点,直线DM和DN的倾斜角互补,直线MN的斜率是否为定值呢?如果是,请你指出这个定值.(本小题不必写出解答过程)
(1)以AB的中点为原点,AB所在直线为x轴建立直角坐标系.
∵|CA|+|CB|=4[(1分)]
不难知道:曲线E是以A,B为两焦点、长轴长为4的椭圆.
故曲线E的方程为
x2
4
+
y2
3
=1

(2)设线段QA的中点为P(x,y),∵A(-1,0),
∴Q(2x+1,2y)[(5分)]
∵点Q在曲线E上,故可得:
(2x+1)2
4
+
(2y)2
3
=1
[(7分)]
即线段QA中点的轨迹方程为(x+
1
2
)2+
4y2
3
=1
[(8分)]
(3)设直线CM和CN的斜率分别为k,-k
直线CM的直线方程为y-
3
2
=k(x+1)

代入曲线E的方程,得(3+4k2)x2+8k(k+
3
2
)x+4k2+12k-3=0
[(9分)]
由韦达定理:xCxM=
4k2+12k-3
3+4k2

xM=-
4k2+12k-3
3+4k2

同理xN=-
4k2-12k-3
3+4k2
[(10分)]
yM-
3
2
=k(xM+1)
yN-
3
2
=-k(xN+1)

kMN=
yM-yN
xM-xN
=
k(xM+xN+2)
xM-xN
=
12k
3+4k2
24k
3+4k2
=
1
2

故直线MN的斜率为定值
1
2
[(12分)]
(4)设D(a,b),当直线DM和DN的倾斜角都为90°时,直线MN即为D'(a,-b)处的切线,则直线MN的斜率为定值
3a
4b

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b(a>0,b≠0),且交抛物线y2=2px(p>0)于M(x1,y1),N(x2,y2)两点.
(1)写出直线l的截距式方程;
(2)证明:
1
y1
+
1
y2
=
1
b

(3)当a=2p时,求∠MON的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点F1(-
2
,0)
F2(
2
,0)
,满足条件|PF2|-|PF1|=2的动点P的轨迹是曲线E,直线l:y=kx-1与曲线E交于A、B两点.
(Ⅰ)求k的取值范围;
(Ⅱ)如果|AB|=6
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
8
+
y2
4
=1
上的点到直线x-y+6=0的距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A,B∈R,A≠B且AB≠0,则方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐标系下的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两焦点分别为F1(-2
2
,0)、F2(2
2
,0),长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2分别为椭圆的左、右焦点,直线PF2的斜率为-4
3
,则△PF1F2的面积为(  )
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线y2=2px(p>0)的焦点F与双曲
x2
4
-
y2
5
=1
的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=
2
|AF|
,则A点的横坐标为(  )
A.2
2
B.3C.2
3
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从圆O:x2+y2=4上任意一点P向x轴作垂线,垂足为P′,点M是线段PP′的中点,则点M的轨迹方程是(  )
A.
9x2
16
+
y2
4
=1
B.
9y2
16
+
x2
4
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1

查看答案和解析>>

同步练习册答案