精英家教网 > 高中数学 > 题目详情
设A,B∈R,A≠B且AB≠0,则方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐标系下的图象可能是(  )
A.B.C.D.
当A>0,B>0时,
x2
B
-
y2
A
=1
表示焦点在x轴的双曲线
方程Bx-y+A=0即为y=Bx+A其斜率为B,纵截距为A
∴选项C,D错
当A<0,B>0,且|A|>|B|时,
x2
B
-
y2
A
=1
表示焦点在y轴的椭圆
方程Bx-y+A=0即为y=Bx+A其斜率为B,纵截距为A
故选项A错
当A<0,B>0,且|A|<|B|时,
x2
B
-
y2
A
=1
表示焦点在x轴的椭圆
方程Bx-y+A=0即为y=Bx+A其斜率为B,纵截距为A
故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,
|CD|
|AB|
=2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)求过点O,F1,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求
F2A
F2B
的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=4x被直线y=2x+b所截得的弦长为3
5
,则b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同焦点,则双曲线的标准方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
12
+
y2
8
=1
上有两点P、Q关于直线l:6x-6y-1=0对称,则PQ的中点M的坐标是(  )
A.(
1
3
1
6
)
B.(
1
2
1
3
)
C.(-
1
3
,-
1
2
)
D.(-
1
2
,-
1
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,一曲线E过点C,且曲线E上任一点到A,B两点的距离之和不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)设点Q是曲线E上的一动点,求线段QA中点的轨迹方程;
(3)设M,N是曲线E上不同的两点,直线CM和CN的倾斜角互补,试判断直线MN的斜率是否为定值.如果是,求这个定值;如果不是,请说明理由.
(4)若点D是曲线E上的任一定点(除曲线E与直线AB的交点),M,N是曲线E上不同的两点,直线DM和DN的倾斜角互补,直线MN的斜率是否为定值呢?如果是,请你指出这个定值.(本小题不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A1B1C1D1的棱长为1,点M 在棱AB上,且AM=
1
3
,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与点P到点M 的距离的平方差为2,则动点P的轨迹是(  )
A.圆B.抛物线C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
,-
3
2
)
,且椭圆的离心率e=
1
2
,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A、B及C、D.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:
1
|AB|
+
1
|CD|
为定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右两焦点分别为F1,F2,p是椭圆上一点,且在x轴上方,PF2⊥F1F2,PF2=λPF1,λ∈[
1
3
1
2
].
(1)求椭圆的离心率e的取值范围;
(2)当e取最大值时,过F1,F2,P的圆Q的截y轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线l上任一点A引圆Q的两条切线,切点分别为M,N.试探究直线MN是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

同步练习册答案