分析 先画出满足条件的平面区域,结合点到直线的距离公式求出其范围即可.
解答 解:若集合M:{(x,y)|x2+y2≤1},
集合N:{(x,y)|(x-2)2+y2≤4},
Q(x,y)∈M∩N,
画出满足条件的平面区域,如图示:
,
令z=3x+4y,得:y=-$\frac{3}{4}$x+$\frac{z}{4}$,
由题意得:直线-$\frac{3}{4}$x-y+$\frac{z}{4}$=0和小圆相切时:z最大,
此时小圆的圆心(0,0)到直线的距离d=$\frac{\frac{z}{4}}{\sqrt{\frac{9}{16}+1}}$=1,解得:z=5,
直线-$\frac{3}{4}$x-y+$\frac{z}{4}$=0和大圆相切时:z最小,
此时大圆的圆心(2,0)到直线的距离d=$\frac{|-\frac{3}{2}+\frac{z}{4}|}{\sqrt{\frac{9}{16}+1}}$=2,解得:z=-4,
故答案为:[-4,5].
点评 不同考查了元素和集合的关系,考查线性规划、点到直线的距离公式,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直于同一平面的两平面平行 | |
| B. | 垂直于同一直线的两平面平行 | |
| C. | 与一直线成等角的两平面平行 | |
| D. | 若一个直角在平面α上的射影仍是一个直角,则这个角所在的平面与平面α平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x<2} | B. | {x|-4≤x<4} | C. | {x|-4≤x<2} | D. | {x|-4≤x<2,或x=4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com