精英家教网 > 高中数学 > 题目详情
已知直线和平面,且的位置关系是              .(用符号表示)
b∥或b

试题分析:当b?α时,a⊥α,则a⊥b
当b∥α时,a⊥α,则a⊥b
故当a⊥b,a⊥α⇒b?α或b∥α
故答案为:b?α或b∥α.
点评:解决该试题的关键是根据线面的位置关系进行分类讨论,分别利用线面垂直的性质进行说明即可.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点,
(1)求证:MN //平面PAD          (2)求点B到平面AMN的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥的侧棱长与底面边长都相等,的中点,则所成的角的余弦值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有三个平面,β,γ,给出下列命题:
①若,β,γ两两相交,则有三条交线     ②若⊥β,⊥γ,则β∥γ
③若⊥γ,β∩=a,β∩γ=b,则a⊥b   ④若∥β,β∩γ=,则∩γ=
其中真命题是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。

(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,平面和平面的位置关系为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果直线l与平面不垂直,那么在平面内(  )
A.不存在与l垂直的直线B.存在一条与l垂直的直线
C.存在无数条与l垂直的直线D.任一条都与l垂直

查看答案和解析>>

同步练习册答案